Publications:
[1] S. Palva, P. Joanne, C. Migdal, E. Lopez-Soler, Y. Hovhannisyan, A. Nicolas, and O. Agbulut. Polyacrylamide hydrogels with rigidity-independent surface chemistry show limited long-term maintenance of pluripotency of human induced pluripotent stem cells on soft substrate. ACS Biomat. Sci. Eng., 6:340-351, 2020.
[2] N. Bouchonville and A. Nicolas. Quantification of the elastic properties of soft and sticky materials using AFM. In N. C. Santos and F. A. Carvalho, editors, Meth. Mol. Biol., Atomic Force Microscopy : Methods and Protocols, 281–290, 2019.
[3] C. Migdal and A. Nicolas. De l’intérêt de cultiver des cellules sur des supports mous. Techniques Hospitalières, 768, 2018.
[4] A. Nicolas. Cell adhesion mechanosensitivity, an active biological process. comment on ”cellular mechanosensing of the biophysical microenvironment : A review of the mathematical models of biophysical regulation of cell responses” by bo cheng et al. Phys. Life Rev., 22-23 :123–126, 2017.
[5] N. Bouchonville, M. Meyer, C. Gaude, E. Gay, D. Ratel, and A. Nicolas. AFM mapping of the elastic properties of brain tissue reveals kpa/μm gradients of rigidity. Soft Matter, 12 :6232–6239, 2016.
[6] M. Moussus, C. der Loughian, D. Fuard, M. Courcon, D. Gulino-Debrac, H. Delanoe-Ayari, and A. Nicolas. Intracellular stresses in patterned cell assemblies. Soft Matter, 10 :2414–2423, 2014.
[7] M. Moussus, C. der Loughian, D. Fuard, M. Courçon, D. Gulino Debrac, H. Delanoë-Ayari, and A. Nicolas. Reply to the ’comment on “intracellular stresses in patterned cell assemblies”’ by D. Tambe et al., Soft Matter, 2014, 10, 7681. Soft Matter, 10 :7683–7684, 2014.
[8] B. Ladoux and A. Nicolas. Physical-based principles of cell adhesion mechanosensitivity in tissues. Rep. Prog. Phys., 75 :116601–116626, 2012.
[9] A. Chervin-Pétinot, M. Courçon, S. Almagro, A. Nicolas, A. Grichine, D. Grunwald, M.-H. Prandini, P. Huber, and D. Gulino-Debrac. Epithelial protein lost in neoplasm (eplin) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J. Biol. Chem., 287 :7556–7572, 2012.
[10] P. Robert, A. Nicolas, S. Aranda-Espinoza, P. Bongrand, and L. Limozin. Minimal encounter time and separation determine ligand-receptor binding in cell adhesion. Biophys. J., 100 :2642 – 2651, 2011.
[11] T. Honegger, S. Sarla, O. Lecarme, K. Berton, A. Nicolas, and D. Peyrade. Selective grafting of proteins on janus particles : Adsorption and covalent coupling strategies. Microelectron. Eng., 88 :1852–1855, 2011.
[12] N. Broguière, T. Pinedo Rivera, B. Pépin-Donat, A. Nicolas, and D. Peyrade. Capillary force assembly of giant vesicles on a microstructured substrate. Microelectron. Eng., 88 :1821–1824, 2011.
[13] A. Nicolas, A. Besser, and S. A. Safran. Is the mechanics of cell-matrix adhesion amenable to physical modeling ? JAST, 24 :2203–2214, 2010.
[14] D. Fuard, M. Moussus, C. Tomba, D. Peyrade, and A. Nicolas. Fabrication of three-dimensional structures for the assessment of cell mechanical interactions within cell monolayers. J. Vac. Sci. Technol. B, 28 :C6K1, 2010.
[15] P. F. Lenne and A. Nicolas. Physics puzzles on membrane domains posed by cell biology. Soft Matter, 5 :2841–2848, 2009.
[16] A. Nicolas, A. Besser, and S. A. Safran. Dynamics of cellular focal adhesions on deformable substrates : consequences for cell force microscopy. Biophys. J., 95 :527–539, 2008.
[17] S. A. Safran, A. Nicolas, and U. S. Schwarz. Elastic interactions of biological cells. In W. Gutkowski and T. A. Kowalewski, editors, Mechanics of the 21st century, Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 329, 2004.
[18] A. Nicolas and S. A. Safran. Elastic deformations of grafted layers with surface stress. Phys. Rev. E, 69 :051902, 2004.
[19] A. Nicolas, B. Geiger, and S. A. Safran. Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Nat. Acad. Sci. USA, 101 :12520–12525, 2004.