Sodium - Na : Différence entre versions

De Wiki Materials
Aller à : navigation, rechercher
(General informations)
(Physical Properties)
 
(37 révisions intermédiaires par le même utilisateur non affichées)
Ligne 7 : Ligne 7 :
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Atomic Number
 
!scope="row" style="text-align: left;"|Atomic Number
|''- - - Value - - -''
+
|11
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Element Category (chemical set)
 
!scope="row" style="text-align: left;"|Element Category (chemical set)
|''- - - Value - - -''
+
|Alkali Metal
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Group
 
!scope="row" style="text-align: left;"|Group
|''- - - Value - - -''
+
|1
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Period
 
!scope="row" style="text-align: left;"|Period
|''- - - Value - - -''
+
|3
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Block
 
!scope="row" style="text-align: left;"|Block
|''- - - Value - - -''
+
|s
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Shivaiah, V., Nagaraju, M., & Das, S. K. (2003). Formation of a Spiral-Shaped Inorganic−Organic Hybrid Chain, [CuII(2,2‘-bipy)(H2O)2Al(OH)6Mo6O18]nn-:  Influence of Intra- and Interchain Supramolecular Interactions. Inorganic Chemistry, 42(21), 6604–6606. https://doi.org/10.1021/ic034581f
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Mohs Hardness
 
!scope="row" style="text-align: left;"|Mohs Hardness
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|CAS Registry Number
 
!scope="row" style="text-align: left;"|CAS Registry Number
|''- - - Value - - -''
+
|7440-23-5
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Baudler, M., Düster, D., Langerbeins, K., & Germeshausen, J. (1984). Na3P21 and Li3P21, the First Polyphosphides with Isolated P 213− Groups. Angewandte Chemie International Edition, 23(4), 317–318. http://onlinelibrary.wiley.com/doi/10.1002/anie.198403171/epdf
 
|-
 
|-
 
!scope="row" style="text-align: left;"|EINECS Registry Number
 
!scope="row" style="text-align: left;"|EINECS Registry Number
|''- - - Value - - -''
+
|231-132-9
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
|}
 
|}
Ligne 48 : Ligne 48 :
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Melting Point
 
!scope="row" style="text-align: left;"|Melting Point
|''- - - Value - - -''
+
|97,8 °C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Page 260, ''Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Boiling Point
 
!scope="row" style="text-align: left;"|Boiling Point
|''- - - Value - - -''
+
|883°C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Page 260, ''Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Density near Room Temperature
 
!scope="row" style="text-align: left;"|Density near Room Temperature
|''- - - Value - - -''
+
|968 kg/m3 at 20°C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Page 260, ''Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
 
|-
 
|-
!scope="row" style="text-align: left;"|Density when Liquid at Melting Point
+
!scope="row" style="text-align: left;"|Density when Liquid at 100°C
|''- - - Value - - -''
+
|928 kg/m3 at 100°C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Heat of Fusion
 
!scope="row" style="text-align: left;"|Heat of Fusion
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Heat of Vaporization
 
!scope="row" style="text-align: left;"|Heat of Vaporization
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Molar Volume
 
!scope="row" style="text-align: left;"|Molar Volume
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Molar Heat Capacity
 
!scope="row" style="text-align: left;"|Molar Heat Capacity
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Vapor Pressure
 
!scope="row" style="text-align: left;"|Vapor Pressure
|''- - - Value - - -''
+
|1,19.10-3 mm Hg at 100°C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Page 260, ''Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Oxidation State
 
!scope="row" style="text-align: left;"|Oxidation State
|''- - - Value - - -''
+
| -1 ; +1
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
| https://en.wikipedia.org/wiki/List_of_oxidation_states_of_the_elements
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Speed of Sound
 
!scope="row" style="text-align: left;"|Speed of Sound
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Thermal Expansion
 
!scope="row" style="text-align: left;"|Thermal Expansion
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Thermal Conductivity
 
!scope="row" style="text-align: left;"|Thermal Conductivity
|''- - - Value - - -''
+
|140 W/m.°C at 20°C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Page 260, ''Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Electrical Resistivity
 
!scope="row" style="text-align: left;"|Electrical Resistivity
|''- - - Value - - -''
+
|4,69 μΩ at 20°C
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Page 260, ''Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Magnetic Ordering
 
!scope="row" style="text-align: left;"|Magnetic Ordering
|''- - - Value - - -''
+
|Paramagnetic
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Young's Modulus
 
!scope="row" style="text-align: left;"|Young's Modulus
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Shear Modulus
 
!scope="row" style="text-align: left;"|Shear Modulus
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Bulk Modulus
 
!scope="row" style="text-align: left;"|Bulk Modulus
|''- - - Value - - -''
+
|6.9 GPa
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Miyake, T., Aryasetiawan, F., Kino, H., & Terakura, K. (2001). Total energy from the many-body perturbation approach with a model spectral function: An application to simple metals. Physical Review B, 64(23), 233109. https://doi.org/10.1103/PhysRevB.64.233109
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Poisson Ratio
 
!scope="row" style="text-align: left;"|Poisson Ratio
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Electronegativity (Pauling scale)
 
!scope="row" style="text-align: left;"|Electronegativity (Pauling scale)
|''- - - Value - - -''
+
|0,9
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Yin, S. Z. and G. L. and A. D. and T. W. and Q. (2006). Ferroelectric and piezoelectric properties of (Na, K) 0.5 Bi 0.5 TiO 3 lead free ceramics. Journal of Physics D: Applied Physics, 39(10), 2277. Retrieved from http://stacks.iop.org/0022-3727/39/i=10/a=042
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Energy Gap (at 300K)
 
!scope="row" style="text-align: left;"|Energy Gap (at 300K)
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Dielectric Constant
 
!scope="row" style="text-align: left;"|Dielectric Constant
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
|}
 
|}
Ligne 141 : Ligne 141 :
 
{|class="wikitable sortable"
 
{|class="wikitable sortable"
 
!scope="row" style="text-align: left;"|Standard Atomic Weight
 
!scope="row" style="text-align: left;"|Standard Atomic Weight
|''- - - Value - - -''
+
|22,98976928 g/mol
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Küster, F. W. (2011). Rechentafeln für die chemische Analytik: Basiswissen für die analytische Chemie. Walter de Gruyter.
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Atomic Radius
 
!scope="row" style="text-align: left;"|Atomic Radius
|''- - - Value - - -''
+
|0,18570 nm
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Senkov, O. N., & Miracle, D. B. (2001). Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Materials Research Bulletin, 36(12), 2183–2198. https://doi.org/https://doi.org/10.1016/S0025-5408(01)00715-2
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Covalent Radius
 
!scope="row" style="text-align: left;"|Covalent Radius
|''- - - Value - - -''
+
|1,9 A
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Van Hove, M. A. (1975). The potential profile in LEED theory. Surface Science, 48(2), 406–416. https://doi.org/https://doi.org/10.1016/0039-6028(75)90415-X
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Van der Waals Radius
 
!scope="row" style="text-align: left;"|Van der Waals Radius
|''- - - Value - - -''
+
|227 pm
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Bondi, A. (1964). van der Waals volumes and radii. The Journal of Physical Chemistry, 68(3), 441–451.
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Electron Configuration
 
!scope="row" style="text-align: left;"|Electron Configuration
|''- - - Value - - -''
+
|[Ne] 3s1
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|Alajerami, Y. S. M., Hashim, S., Hassan, W. M. S. W., Ramli, A. T., & Saleh, M. A. (2013). The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions. Optics and Spectroscopy, 114(4), 537–543. https://doi.org/10.1134/S0030400X1304022X
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Electrons per Shell
 
!scope="row" style="text-align: left;"|Electrons per Shell
|''- - - Value - - -''
+
|2, 8, 1
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
!scope="row" style="text-align: left;"|Crystal Structure
 
!scope="row" style="text-align: left;"|Crystal Structure
|''- - - Value - - -''
+
|
|''- - - - - - - - - - - Source - - - - - - - - - -''
+
|
 
|-
 
|-
 
|}
 
|}

Version actuelle en date du 17 septembre 2018 à 16:50

General informations

Symbol Na
Atomic Number 11
Element Category (chemical set) Alkali Metal
Group 1
Period 3
Block s Shivaiah, V., Nagaraju, M., & Das, S. K. (2003). Formation of a Spiral-Shaped Inorganic−Organic Hybrid Chain, [CuII(2,2‘-bipy)(H2O)2Al(OH)6Mo6O18]nn-:  Influence of Intra- and Interchain Supramolecular Interactions. Inorganic Chemistry, 42(21), 6604–6606. https://doi.org/10.1021/ic034581f
Mohs Hardness
CAS Registry Number 7440-23-5 Baudler, M., Düster, D., Langerbeins, K., & Germeshausen, J. (1984). Na3P21 and Li3P21, the First Polyphosphides with Isolated P 213− Groups. Angewandte Chemie International Edition, 23(4), 317–318. http://onlinelibrary.wiley.com/doi/10.1002/anie.198403171/epdf
EINECS Registry Number 231-132-9

Physical Properties

Phase - - - Value - - - - - - - - - - - - - - Source - - - - - - - - - -
Melting Point 97,8 °C Page 260, Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
Boiling Point 883°C Page 260, Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
Density near Room Temperature 968 kg/m3 at 20°C Page 260, Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
Density when Liquid at 100°C 928 kg/m3 at 100°C
Heat of Fusion
Heat of Vaporization
Molar Volume
Molar Heat Capacity
Vapor Pressure 1,19.10-3 mm Hg at 100°C Page 260, Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
Oxidation State -1 ; +1 https://en.wikipedia.org/wiki/List_of_oxidation_states_of_the_elements
Speed of Sound
Thermal Expansion
Thermal Conductivity 140 W/m.°C at 20°C Page 260, Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
Electrical Resistivity 4,69 μΩ at 20°C Page 260, Ashworth, P., & Chetland, J. (1991). Prospects for sodium metal applications. Speciality Chemicals: Innovations in Industrial Synthesis and Applications
Magnetic Ordering Paramagnetic
Young's Modulus
Shear Modulus
Bulk Modulus 6.9 GPa Miyake, T., Aryasetiawan, F., Kino, H., & Terakura, K. (2001). Total energy from the many-body perturbation approach with a model spectral function: An application to simple metals. Physical Review B, 64(23), 233109. https://doi.org/10.1103/PhysRevB.64.233109
Poisson Ratio
Electronegativity (Pauling scale) 0,9 Yin, S. Z. and G. L. and A. D. and T. W. and Q. (2006). Ferroelectric and piezoelectric properties of (Na, K) 0.5 Bi 0.5 TiO 3 lead free ceramics. Journal of Physics D: Applied Physics, 39(10), 2277. Retrieved from http://stacks.iop.org/0022-3727/39/i=10/a=042
Energy Gap (at 300K)
Dielectric Constant

Atomic Properties

Standard Atomic Weight 22,98976928 g/mol Küster, F. W. (2011). Rechentafeln für die chemische Analytik: Basiswissen für die analytische Chemie. Walter de Gruyter.
Atomic Radius 0,18570 nm Senkov, O. N., & Miracle, D. B. (2001). Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Materials Research Bulletin, 36(12), 2183–2198. https://doi.org/https://doi.org/10.1016/S0025-5408(01)00715-2
Covalent Radius 1,9 A Van Hove, M. A. (1975). The potential profile in LEED theory. Surface Science, 48(2), 406–416. https://doi.org/https://doi.org/10.1016/0039-6028(75)90415-X
Van der Waals Radius 227 pm Bondi, A. (1964). van der Waals volumes and radii. The Journal of Physical Chemistry, 68(3), 441–451.
Electron Configuration [Ne] 3s1 Alajerami, Y. S. M., Hashim, S., Hassan, W. M. S. W., Ramli, A. T., & Saleh, M. A. (2013). The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions. Optics and Spectroscopy, 114(4), 537–543. https://doi.org/10.1134/S0030400X1304022X
Electrons per Shell 2, 8, 1
Crystal Structure