Silicium - Si

De Wiki Materials
Aller à : navigation, rechercher

General informations

Symbol Si
Atomic Number 14
Element Category (chemical set) Metalloid
Group Group 14 (Carbon group)
Period Period 3
Block p-block
Mohs Hardness 7 Mohs Estragnat, E., Tang, G., Liang, H., Jahanmir, S., Pei, P., & Martin, J. M. (2004). Experimental investigation on mechanisms of silicon chemical mechanical polishing. Journal of Electronic Materials, 33(4), 334–339. https://doi.org/10.1007/s11664-004-0140-8
CAS Registry Number 7440-21-3 Jensen, D. S., Kanyal, S. S., Madaan, N., Vail, M. A., Dadson, A. E., Engelhard, M. H., & Linford, M. R. (2013). Silicon (100)/SiO2 by XPS. Surface Science Spectra, 20(1), 36–42. https://doi.org/10.1116/11.20121101
EINECS Registry Number 231-130-8

Physical Properties

Phase Solid
Melting Point 1683 K Abraham, F. F., & Broughton, J. Q. (1986). Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics. Physical Review Letters, 56(7), 734–737. Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.56.734
Boiling Point 3500 K Olesinski, R. W., & Abbaschian, G. J. (1984). The C−Si (Carbon-Silicon) system. Bulletin of Alloy Phase Diagrams, 5(5), 486–489. https://doi.org/10.1007/BF02872902
Density near Room Temperature 2.3290 g/cm3 page 458, article "Composition and Structure of Surfaces of Silicon Spheres used in Determination of the Avogadro Constant", M. J. Kenny, R. J. Netterfield, L. S. Wielunski, D. Beaglehole, Institute of Electrical and Electronics Engineers, Conference on Precision Electromagnetic Measurements Digest, 1998
Density when Liquid at Melting Point 2570 kg/m3 Kalaev, V. V, Lukanin, D. P., Zabelin, V. A., Makarov, Y. N., Virbulis, J., Dornberger, E., & von Ammon, W. (2002). Prediction of bulk defects in CZ Si crystals using 3D unsteady calculations of melt convection. Materials Science in Semiconductor Processing, 5(4), 369–373. https://doi.org/http://dx.doi.org/10.1016/S1369-8001(02)00132-4
Heat of Fusion 5,066.10^4 J/mole "Properties of Crystalline Silicon", Robert Hull, IET, 1999, ISBN 9780852969335
Heat of Vaporization 13 722 000 J/kg Tao, S., Wu, B., Zhou, Y., & Gao, Y. (2009). Thermal modeling and experimental study of infrared nanosecond laser ablation of silicon. Journal of Applied Physics, 106(12), 123507. https://doi.org/10.1063/1.3271413
Molar Volume 12,0588207(54) cm3/mol "A Reassessment of the Molar Volume of Silicon and of the Avogadro Constant", Paul De Bièvre, Staf Valkiers, Rüdiger Kessel, Philip D. P. Taylor, Peter Becker, H. Bettin, Anna Peuto, Savino Pettorruso, K. Fujii, A. Waseda, M. Tanaka, R. D. Deslattes, H. S. Peiser, and M. J. Kenny, IEEE Transactions on instrumentation and measurement, Volume 50, No 2, April 2001
Molar Heat Capacity 19,789 J/(mol.K) CRC Handbook of Chemistry and Physics, 84th Edition, David R. Lide, CRC Press, 2003, Section 4, Properties of the Elements and Inorganic Compounds; Heat Capacity of the Elements at 25°C
Vapor Pressure
Oxidation State 0
Speed of Sound 5843 m/s (transverse), 8433 m/s (longitudinal) Page 2424, Deymier, P. A., Khelif, A., Djafari-Rouhani, B., Vasseur, J. O., & Raghavan, S. (2000). Theoretical calculation of the acoustic force on a patterned silicon wafer during megasonic cleaning. Journal of Applied Physics, 88(5), 2423–2429. https://doi.org/10.1063/1.1287224
Thermal Expansion 3,1.10-6/K at 20°C Table 1, Page 536, Cheng, E. J., & Shen, Y.-L. (2012). Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging. Microelectronics Reliability, 52(3), 534–540. http://dx.doi.org/10.1016/j.microrel.2011.11.001
Thermal Conductivity 66,5 W/m.K Page 90, Kalaev, V. V, Evstratov, I. Y., & Makarov, Y. N. (2003). Gas flow effect on global heat transport and melt convection in Czochralski silicon growth. Journal of Crystal Growth, 249(1), 87–99. http://dx.doi.org/10.1016/S0022-0248(02)02109-7
Electrical Resistivity 2,3.10^5 Ω.cm Page 1, Saraf, L. V. (2010). Site-specific Pt deposition and etching on electrically and thermally isolated SiO 2 micro-disk surfaces. Journal of Micromechanics and Microengineering, 20(4), 45031. https://doi.org/10.1088/0960-1317/20/4/045031
Magnetic Ordering diamagnetic Page 1915, Lin, J.-Y., Hsu, H.-M., & Lu, K.-C. (2015). Growth of single-crystalline nickel silicide nanowires with excellent physical properties. CrystEngComm, 17(9), 1911–1916. https://doi.org/10.1039/C4CE02513J
Young's Modulus 130 GPa (<100> direction), 169 GPa (110 directions) Page 237, article "What is the Young's Modulus of Silicon?", M. A. Hopcroft, W. D. Nix and T. W. Kenny, Journal of Microelectromechanical Systems, vol. 19, no. 2, 2010
Shear Modulus 130,2 GPa (<100> directions), 187,5 GPa (<110> directions), and 168,9 GPa (<111> directions) Page 662, Kim, J., Cho, D. (Dan), & Muller, R. S. (2001). Why is (111) Silicon a Better Mechanical Material for MEMS? BT - Transducers ’01 Eurosensors XV: The 11th International Conference on Solid-State Sensors and Actuators June 10 – 14, 2001 Munich, Germany. In E. Obermeier (Ed.) (pp. 662–665). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-59497-7_157
Bulk Modulus 90 +- 5 GPa Page 5290, San-Miguel, A., Kéghélian, P., Blase, X., Mélinon, P., Perez, A., Itié, J. P., … Pouchard, M. (1999). High Pressure Behavior of Silicon Clathrates: A New Class of Low Compressibility Materials. Physical Review Letters, 83(25), 5290–5293. Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.83.5290
Poisson Ratio 0,064 (<100> directions), 0,361 (<110> directions), and 0,182 to 0,262 (<111> directions) Page 662, Kim, J., Cho, D. (Dan), & Muller, R. S. (2001). Why is (111) Silicon a Better Mechanical Material for MEMS? BT - Transducers ’01 Eurosensors XV: The 11th International Conference on Solid-State Sensors and Actuators June 10 – 14, 2001 Munich, Germany. In E. Obermeier (Ed.) (pp. 662–665). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-59497-7_157
Electronegativity (Pauling scale) 1,90 Table 4, Pages 2271-2277, Tansel, B., & Surita, S. C. (2014). Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Management, 34(11), 2271–2277. https://doi.org/http://dx.doi.org/10.1016/j.wasman.2014.07.025
Energy Gap (at 300K) 1,1242 eV Page 1847, Bludau, W., Onton, A., & Heinke, W. (1974). Temperature dependence of the band gap of silicon. Journal of Applied Physics, 45(4), 1846–1848. https://doi.org/10.1063/1.1663501
Dielectric Constant 11,8 Page 062106-1, Willis, K. J., Hagness, S. C., & Knezevic, I. (2010). Terahertz conductivity of doped silicon calculated using the ensemble Monte Carlo/finite-difference time-domain simulation technique. Applied Physics Letters, 96(6), 62106. https://doi.org/10.1063/1.3308491

Atomic Properties

Standard Atomic Weight 28.085 Table 1, Page 8, article "Atomic weights of the elements 2013 (IUPAC Technical Report)", Juris Meija*, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk and Thomas Prohaska, Pure and Applied Chemistry, Volume 83, Issue 5, 2013, https://www.degruyter.com/downloadpdf/j/pac.2016.88.issue-3/pac-2015-0305/pac-2015-0305.pdf
Atomic Radius 110 pm Table 4, Page 2275, Tansel, B., & Surita, S. C. (2014). Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Management, 34(11), 2271–2277. https://doi.org/http://dx.doi.org/10.1016/j.wasman.2014.07.025
Covalent Radius 111 pm Table 4, Page 2275, Tansel, B., & Surita, S. C. (2014). Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Management, 34(11), 2271–2277. https://doi.org/http://dx.doi.org/10.1016/j.wasman.2014.07.025
Van der Waals Radius 210 pm Table 4, Page 2275, Tansel, B., & Surita, S. C. (2014). Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Management, 34(11), 2271–2277. https://doi.org/http://dx.doi.org/10.1016/j.wasman.2014.07.025
Electron Configuration [Ne] 3s2 3p2 page 275, Rich, J. C. (1966), article "Continuous ultraviolet absorption by neutral silicon", John C. Rich, The Astrophysical Journal, Volume 148, April 1967
Electrons per Shell 2, 8, 4
Crystal Structure Diamond lattice page 10686, Stampfli, P., & Bennemann, K. H. (1992). Dynamical theory of the laser-induced lattice instability of silicon. Physical Review B, 46(17), 10686–10692. https://link.aps.org/doi/10.1103/PhysRevB.46.10686