Germanium - Ge

De Wiki Materials
Aller à : navigation, rechercher

General informations

Symbol Ge
Atomic Number 32
Element Category (chemical set) mettaloid Robertz, B., Verhelle, J., & Schurmans, M. (2015). The Primary and Secondary Production of Germanium: A Life-Cycle Assessment of Different Process Alternatives. Jom, 67(2), 412–424. https://doi.org/10.1007/s11837-014-1267-6
Group 14 (carbon group) Beekman, M., & Nolas, G. S. (2008). Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J. Mater. Chem., 18(8), 842–851. https://doi.org/10.1039/B706808E
Period 4 Sanderson, R. T. (1957). AN ELECTRONIC DISTINCTION BETWEEN METALS AND NONMETALS, 34(5), 1957. http://pubs.acs.org/doi/pdf/10.1021/ed034p229
Block p Norman, N. C., & Pickett, N. L. (1995). Phosphine complexes of the heavier p-block elements: aspects of structure and bonding. Coordination Chemistry Reviews, 145(C), 27–54. https://doi.org/10.1016/0010-8545(95)90214-7
Mohs Hardness 6.0 Rosenberg, E. (2013). Germanium-Containing Compounds, Current Knowledge and Applications BT - Encyclopedia of Metalloproteins. In R. H. Kretsinger, V. N. Uversky, & E. A. Permyakov (Eds.) (pp. 847–855). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-1533-6_582
CAS Registry Number 7440-56-4 Almond, M. J., Doncaster, A. M., Noble, P. N., & Walsh, R. (1982). Ge-H Bond Strengths in Germanes. Journal of the American Chemical Society, 104(1974), 4717–4718. http://pubs.acs.org/doi/pdf/10.1021/ja00381a054
EINECS Registry Number

Physical Properties

Phase solid
Melting Point 1211,40 K Ji, P., & Zhang, Y. (2013). Femtosecond laser processing of germanium: an ab initio molecular dynamics study. Journal of Physics D: Applied Physics, 46(49), 495108. https://doi.org/10.1088/0022-3727/46/49/495108
Boiling Point 3106 K Ji, P., & Zhang, Y. (2013). Femtosecond laser processing of germanium: an ab initio molecular dynamics study. Journal of Physics D: Applied Physics, 46(49), 495108. https://doi.org/10.1088/0022-3727/46/49/495108
Density near Room Temperature 5,323 g/cm3 Pesquisas, I. De. (2007). 217th ECS Meeting, Abstract #692, © The Electrochemical Society, 4000. Retrieved from http://ma.ecsdl.org/content/MA2010-01/1/62.full.pdf
Density when Liquid at Melting Point 5,51 g/cm3 Glazov, V. M., & Shchelikov, O. D. (2000). Volume changes during melting and heating of silicon and germanium melts. High Temperature, 38(3), 405–412. https://doi.org/10.1007/BF02756000
Heat of Fusion 34,71 kJ/mol Berger, L. I. (1996). Semiconductor materials. CRC press.
Heat of Vaporization 333,9 kJ/mol Berger, L. I. (1996). Semiconductor materials. CRC press.
Molar Volume
Molar Heat Capacity 23,222 J/(mol.K) David R. Lide, editor. CRC Handbook of Chemistry and Physics, 88th edition. Boca Raton, Florida: Taylor & Francis Group, 2008
Vapor Pressure
Oxidation State 0
Speed of Sound 5400 m/s (at 20°C) Shockley, W. (1951). Hot Electrons in Germanium and Ohm’s Law. Bell System Technical Journal, 30(4), 990–1034. https://doi.org/10.1002/j.1538-7305.1951.tb03692.x
Thermal Expansion 5,838 µm/(m.K) Reeber, R. R., & Wang, K. (1996). Thermal expansion and lattice parameters of group IV semiconductors. Materials Chemistry and Physics, 46(2–3), 259–264. https://doi.org/10.1016/S0254-0584(96)01808-1
Thermal Conductivity 60 W/m.K Garg, J., Bonini, N., Kozinsky, B., & Marzari, N. (2011). Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: A first-principles study. Physical Review Letters, 106(4), 1–4. https://doi.org/10.1103/PhysRevLett.106.045901
Electrical Resistivity 40 Ω.cm Hsieh, C.-S., & Schröder, K. (1996). Hall-effect measurements on Cr films deposited on Ge substrates. Journal of Applied Physics, 79(8), 6522. https://doi.org/10.1063/1.361932
Magnetic Ordering diamagnetic book "Magnetic materials and their applications", Carl Heck, Butterwoths editions, 1974
Young's Modulus 103 GPa Higurashi, E., Sasaki, Y., Kurayama, R., Suga, T., Doi, Y., Sawayama, Y., & Hosako, I. (2015). Room-temperature direct bonding of germanium wafers by surface-activated bonding method. Japanese Journal of Applied Physics, 54(3). https://doi.org/10.7567/JJAP.54.030213
Shear Modulus 56 GPa Hebbache, M. (2000). Shear modulus and hardness of crystals: Density functional calculations. Solid State Communications, 113(8), 427–432. https://doi.org/10.1016/S0038-1098(99)00514-1
Bulk Modulus 76 GPa Hebbache, M. (2000). Shear modulus and hardness of crystals: Density functional calculations. Solid State Communications, 113(8), 427–432. https://doi.org/10.1016/S0038-1098(99)00514-1
Poisson Ratio 0,273 to 0,280 People, R. (1986). Indirect band gap and band alignment for coherently strained SixGe1-x bulk alloys on germanium (001) substrates, R. People, Physical Review B, 34(4), 2508–2510. Retrieved from https://link.aps.org/doi/10.1103/PhysRevB.34.2508
Electronegativity (Pauling scale) 2.01 Li, K., & Xue, D. (2006). Estimation of electronegativity values of elements in different valence states. Journal of Physical Chemistry A, 110(39), 11332–11337. https://doi.org/10.1021/jp062886k
Energy Gap (at 300K) 0,67 eV Negishi, Y., Kawamata, H., Hayakawa, F., Nakajima, A., & Kaya, K. (1998). The infrared HOMO–LUMO gap of germanium clusters. Chemical Physics Letters, 294(4), 370–376.
Dielectric Constant 16,0 D’Altroy, F. A., & Fan, H. Y. (1956). Effect of Neutral Impurity on the Microwave Conductivity and Dielectric Constant of Germanium at Low Temperatures. Physical Review, 103(6), 1671–1674. Retrieved from https://link.aps.org/doi/10.1103/PhysRev.103.1671

Atomic Properties

Standard Atomic Weight 72,64 g/mol Page 362, Hernández-Montero, W. W., Zaldívar-Huerta, I. E., Zúñiga-Islas, C., Torres-Jácome, A., Reyes-Betanzo, C., & Itzmoyotl-Toxqui, A. (2012). Optical and compositional properties of amorphous silicon-germanium films by plasma processing for integrated photonics. Optical Materials Express, 2(4), 358. https://doi.org/10.1364/OME.2.000358
Atomic Radius 152 pm Page 3, Archilla, J. F. R., Coelho, S. M. M., Auret, F. D., Nyamhere, C., Dubinko, V. I., & Hizhnyakov, V. (2015). Experimental Observation of Intrinsic Localized Modes in Germanium BT - Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals. In J. F. R. Archilla, N. Jiménez, V. J. Sánchez-Morcillo, & L. M. García-Raffi (Eds.) (pp. 343–362). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-21045-2_14
Covalent Radius 122 pm Page 153502-1, Han, G., Guo, P., Yang, Y., Zhan, C., Zhou, Q., & Yeo, Y. C. (2011). Silicon-based tunneling field-effect transistor with elevated germanium source formed on (110) silicon substrate. Applied Physics Letters, 98(15), 98–101. https://doi.org/10.1063/1.3579242
Van der Waals Radius 211 pm Page 5809, Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J., & Truhlar, D. G. (2009). Consistent van der Waals Radii for the Whole Main Group. The Journal of Physical Chemistry A, 113(19), 5806–5812. https://doi.org/10.1021/jp8111556
Electron Configuration [Ar] 3d10 4s2 4p2 Page 082111-1, Houssa, M., Pourtois, G., Afanas’ev, V. V, & Stesmans, A. (2010). Electronic properties of two-dimensional hexagonal germanium. Applied Physics Letters, 96(8), 82111. https://doi.org/10.1063/1.3332588
Electrons per Shell 2, 8, 18, 4
Crystal Structure face-centered cubic Mani Pandey, K. K., Prakash, O., & Bhattacharya, B. (2003). Variation of activation volume with temperature for Fe, Si, and Ge. Materials Letters, 57(26), 4319–4322. http://dx.doi.org/10.1016/S0167-577X(03)00310-0