Copper - Cu

De Wiki Materials
Aller à : navigation, rechercher

General informations

Symbol Cu
Atomic Number 29
Element Category (chemical set) Metal
Group 11 Page 349, Díez-González, S., & Nolan, S. P. (2008). Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Accounts of Chemical Research, 41(2), 349–358. https://doi.org/10.1021/ar7001655
Period 4 Page 1741, Roma-Luciow, R., Sarraf, L., & Morcellet, M. (2001). Complexes of poly(acrylic acid) with some divalent, trivalent and tetravalent metal ions. European Polymer Journal, 37(9), 1741–1745. https://doi.org/10.1016/S0014-3057(01)00066-0
Block d Page 5133, Mann, J. B., Meek, T. L., Knight, E. T., Capitani, J. F., & Allen, L. C. (2000). Configuration Energies of the d-Block Elements. Journal of the American Chemical Society, 122(21), 5132–5137. https://doi.org/10.1021/ja9928677
Mohs Hardness 3 Page 1287, Uecker, A. (2003). Lead-free carbon brushes for automotive starters. Wear, 255(7), 1286–1290. https://doi.org/10.1016/S0043-1648(03)00182-0
CAS Registry Number 7440-50-8 Page 1836, Oleszek, S., Grabda, M., Shibata, E., & Nakamura, T. (2013). Distribution of copper, silver and gold during thermal treatment with brominated flame retardants. Waste Management, 33(9), 1835–1842. https://doi.org/10.1016/j.wasman.2013.05.009
EINECS Registry Number 231-159-6 Nath, J., Mallik, S., & Borah, A. (2015). A Study on the Effect of Ageing and Intermetallic Compound Growth on the Shear Strength of Surface Mount Technology Solder Joints. Journal of The Institution of Engineers (India): Series D, 96(1), 1–6. https://doi.org/10.1007/s40033-014-0063-3

Physical Properties

Phase Solid
Melting Point 1084,6 °C Blachnik, R., & Müller, A. (2000). The formation of Cu2S from the elements: I. Copper used in form of powders. Thermochimica Acta, 361(1), 31–52. https://doi.org/10.1016/S0040-6031(00)00545-1
Boiling Point 2562 °C Sharma, V. K., & Ghuman, R. S. (2013). Effect of Rake Angle on Dimensional Accuracy of Copper Micro-drilling. Journal of Academia and Industrial Research (JAIR), 2(5), 279. http://www.jairjp.com/OCTOBER%202013/08%20VRIND%20KUMAR.pdf
Density near Room Temperature 8,93 g/cm3 Page 85, Ahn, D.-H., Kim, W., Yoon, E. Y., & Kim, H. S. (2016). Compressibility of hierarchic-architectured agglomerates of hydrogen-reduced copper nanopowders. Journal of Materials Science, 51(1), 82–95. https://link.springer.com/article/10.1007/s10853-015-9414-1
Density when Liquid at Melting Point 7970 +-20 kg/m3 Page 199, Kurochkin, A. R., Popel’, P. S., Yagodin, D. A., Borisenko, A. V, & Okhapkin, A. V. (2013). Density of copper-aluminum alloys at temperatures up to 1400°c determined by the gamma-ray technique. High Temperature, 51(2), 197–205. https://doi.org/10.1134/S0018151X13020120
Heat of Fusion 13,138 kJ/mol Page 4105, Chung, J., Seomun, J., & Kim, J. (2014). Numerical Analysis of Aluminium Extraction from Packaging Waste Utilizing Arc Plasma. Asian Journal of Chemistry, 26(13), 4103.
Heat of Vaporization 325,08 +- 13,09 kJ/mol Page 1213, Duan, Y. J., Chen, B., Ma, Y. C., Gao, M., & Liu, K. (2013). Determination of Vapor Pressure of Liquid Copper by Carrier Gas Method. Journal of Materials Science & Technology, 29(12), 1209–1213. https://doi.org/10.1016/j.jmst.2013.11.002
Molar Volume 7,1106 cm3/mol Table 1, Page 680, Kaptay, G. (2015). Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. Journal of Materials Science, 50(2), 678–687. https://doi.org/10.1007/s10853-014-8627-z
Molar Heat Capacity 24,45 J/mol.K at 300K Table II, Page 644, Martin, D. L. (1987). “‘Tray’” type calorimeter for the 15–300 K temperature range: Copper as a specific heat standard in this range. Review of Scientific Instruments, 58(4), 639–646. https://doi.org/10.1063/1.1139230
Vapor Pressure
Oxidation State 0
Speed of Sound 5,01 km/s Page 112, Ji, P., & Zhang, Y. (2016). Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation. Chemical Physics Letters, 648, 109–113. https://doi.org/10.1016/j.cplett.2016.02.003
Thermal Expansion 17,0.10-6/K at 20°C Table 1, Page 536, Cheng, E. J., & Shen, Y.-L. (2012). Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging. Microelectronics Reliability, 52(3), 534–540. http://dx.doi.org/10.1016/j.microrel.2011.11.001
Thermal Conductivity 387,6 W/m.K Page 4105, Chung, J., Seomun, J., & Kim, J. (2014). Numerical Analysis of Aluminium Extraction from Packaging Waste Utilizing Arc Plasma. Asian Journal of Chemistry, 26(13), 4103.
Electrical Resistivity 1,68 μΩ.cm Page 795, Kim, H.-S., Dhage, S. R., Shim, D.-E., & Hahn, H. T. (2009). Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A, 97(4), 791. https://doi.org/10.1007/s00339-009-5360-6
Magnetic Ordering Diamagnetic Page e654, Jian, X., Dixon, S., Edwards, R. S., & Morrison, J. (2006). Coupling mechanism of an EMAT. Ultrasonics, 44(Supplement), e653–e656. https://doi.org/10.1016/j.ultras.2006.05.123
Young's Modulus 125 GPa Page 287, Touyeras, F., Hihn, J.-Y., Doche, M.-L., & Roizard, X. (2001). Electroless copper coating of epoxide plates in an ultrasonic field. Ultrasonics Sonochemistry, 8(3), 285–290. https://doi.org/10.1016/S1350-4177(01)00090-6
Shear Modulus 44 GPa Table 1, Page 547, Shankar, M. R., Chandrasekar, S., & Farris, T. N. (2004). Interaction Between Dislocations in a Couple Stress Medium. Journal of Applied Mechanics, 71(4), 546–550. Retrieved from http://dx.doi.org/10.1115/1.1767172
Bulk Modulus 140 GPa Figure 4, Page 161, Akbarzadeh, H., & Abbaspour, M. (2016). Investigation of size dependence of the properties of Cu nanoclusters using molecular dynamics simulations. Journal of Molecular Liquids, 219, 158–164. http://www.sciencedirect.com/science/article/pii/S016773221630143X
Poisson Ratio 0,34 Table 1, Page 547, Shankar, M. R., Chandrasekar, S., & Farris, T. N. (2004). Interaction Between Dislocations in a Couple Stress Medium. Journal of Applied Mechanics, 71(4), 546–550. Retrieved from http://dx.doi.org/10.1115/1.1767172
Electronegativity (Pauling scale) 1,90 Page 372, Muhamad, H., Doan, H., & Lohi, A. (2010). Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+. Chemical Engineering Journal, 158(3), 369–377. https://doi.org/10.1016/j.cej.2009.12.042
Energy Gap (at 300K)
Dielectric Constant

Atomic Properties

Standard Atomic Weight 63,54 g/mol Page 1489, Atasoy, E., & Kahraman, N. (2008). Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Materials Characterization, 59(10), 1481–1490. https://doi.org/10.1016/j.matchar.2008.01.015
Atomic Radius 128 pm Table 3, Page 372, Dong, D., Li, Y., Zhang, J., & Hua, X. (2003). Comparison of the adsorption of lead, cadmium, copper, zinc and barium to freshwater surface coatings. Chemosphere, 51(5), 369–373. https://doi.org/10.1016/S0045-6535(02)00835-4
Covalent Radius 138 pm Fang, S., Xiao, X., Xia, L., Li, W., & Dong, Y. (2003). Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. Journal of Non-Crystalline Solids, 321(1), 120–125. https://doi.org/10.1016/S0022-3093(03)00155-8
Van der Waals Radius 1,4 A Cheng, J.-K., Yao, Y.-G., Zhang, J., Li, Z.-J., Cai, Z.-W., Zhang, X.-Y., … Wen, Y.-H. (2004). A Simultaneous Redox, Alkylation, Self-Assembly Reaction under Solvothermal Conditions Afforded a Luminescent Copper(I) Chain Polymer Constructed of Cu3I4- and EtS-4-C5H4N+Et Components (Et = CH3CH2). Journal of the American Chemical Society, 126(25), 7796–7797. https://doi.org/10.1021/ja048624i
Electron Configuration [Ar] 3d10 4s1 Johansson, D., Hansson, P., & Melin, S. (2016). Stress and displacement configurations in the vicinity of a void in a nanometer copper strip. Engineering Fracture Mechanics, 152(Supplement C), 139–146. https://doi.org/10.1016/j.engfracmech.2015.07.033
Electrons per Shell 2, 8, 18, 1 Aw, K. C., & Ibrahim, K. (2003). Characterisation of metal oxide semiconductor capacitor structure using low-k dielectric methylsilsesquioxane with evaporated aluminium and copper gate. Thin Solid Films, 434(1), 178–182. https://doi.org/10.1016/S0040-6090(03)00430-9
Crystal Structure face-centered cubic Page 5, Lee, Y., Choi, J., Lee, K. J., Stott, N. E., & Kim, D. (2008). Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 19(41), 415604. http://iopscience.iop.org/article/10.1088/0957-4484/19/41/415604/meta