Phase
|
Solid
|
|
Melting Point
|
4300 K
|
Page 579, Adawi, M. A., Didyk, A. Y., Varichenko, V. S., & Zaitsev, A. M. (1998). Radiation damage in dielectric and semiconductor single crystals (direct observation). Invited presentation at the Second Radiation Physics Conference, Menoufia, Egypt, 20–24 November 1994.1. Radiation Physics and Chemistry, 53(5), 577–582. http://dx.doi.org/10.1016/S0969-806X(97)00299-5
|
Boiling Point
|
|
|
Density near Room Temperature
|
3,51532 g/cm3
|
Page 1773, Mykolajewycz, R., Kalnajs, J., & Smakula, A. (1964). High‐Precision Density Determination of Natural Diamonds. Journal of Applied Physics, 35(6), 1773–1778. https://doi.org/10.1063/1.1713740
|
Density when Liquid at Melting Point
|
|
|
Heat of Fusion
|
9.2 MJ/kg
|
"Polycristalline Diamond and method for forming same", Inventors: David K. Potter; Thomas J. Ahrens, both of Pasadena, Calif., Assignee: California Institut, Patent Number: 5,087,435, Date of Patent: Feb. 11, 1992
|
Heat of Vaporization
|
|
|
Molar Volume
|
3,417.10-6 m3/mol
|
Page 201913-2, Wang, C. X., Liu, P., Cui, H., & Yang, G. W. (2005). Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Applied Physics Letters, 87(20), 201913. http://aip.scitation.org/doi/abs/10.1063/1.2132069
|
Molar Heat Capacity
|
6,115 J.mol-1.K-1
|
Table 5.1, Page 68, Yoshioka, D. (2007). The Heat Capacity of a Solid, and Black-Body Radiation. Statistical Physics: An Introduction, 67–81. https://link.springer.com/content/pdf/10.1007/978-3-540-28606-6_5.pdf
|
Vapor Pressure
|
|
|
Oxidation State
|
0
|
|
Speed of Sound
|
12000 m/s
|
Page 4, Albrecht, A., Retzker, A., Jelezko, F., & Plenio, M. B. (2013). Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons. New Journal of Physics, 15(8), 83014. http://iopscience.iop.org/article/10.1088/1367-2630/15/8/083014/meta
|
Thermal Expansion
|
10-6 K-1
|
Page 39, Schubert, T., Trindade, B., Weißgärber, T., & Kieback, B. (2008). Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Materials Science and Engineering: A, 475(1), 39–44. http://www.sciencedirect.com/science/article/pii/S0921509307006910
|
Thermal Conductivity
|
> 2000 W.m-1.K-1
|
Page 22, Wort, C. J. H., & Balmer, R. S. (2008). Diamond as an electronic material. Materials Today, 11(1), 22–28. http://dx.doi.org/10.1016/S1369-7021(07)70349-8
|
Electrical Resistivity
|
10e16 ohm.cm
|
Page 270, Manca, J. V, Nesladek, M., Neelen, M., Quaeyhaegens, C., De Schepper, L., & De Ceuninck, W. (1999). High electrical resistivity of CVD-diamond. Microelectronics Reliability, 39(2), 269–273. http://dx.doi.org/10.1016/S0026-2714(98)00225-X
|
Magnetic Ordering
|
diamagnetic
|
|
Young's Modulus
|
1144 GPa
|
Page 880, Maître, N., Camelio, S., Barranco, A., Girardeau, T., & Breelle, E. (2005). Physical and chemical properties of amorphous hydrogenated carbon films deposited by PECVD in a low self-bias range. Journal of Non-Crystalline Solids, 351(10), 877–884. http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.058
|
Shear Modulus
|
533 GPa
|
Page 429, Hebbache, M. (2000). Shear modulus and hardness of crystals: density functional calculations. Solid State Communications, 113(8), 427–432. http://dx.doi.org/10.1016/S0038-1098(99)00514-1
|
Bulk Modulus
|
435 GPa
|
Page 7990, Cohen, M. L. (1985). Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B, 32(12), 7988–7991. Retrieved from https://link.aps.org/doi/10.1103/PhysRevB.32.7988
|
Poisson Ratio
|
0,0845
|
Table 1, Page 119, Krawitz, A. D., Andrew Winholtz, R., Drake, E. F., & Griffin, N. D. (1999). Residual stresses in polycrystalline diamond compacts. International Journal of Refractory Metals and Hard Materials, 17(1), 117–122. http://dx.doi.org/10.1016/S0263-4368(99)00007-4
|
Electronegativity (Pauling scale)
|
2,55
|
Table 1, Page 11334, Li, K., & Xue, D. (2006). Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 110(39), 11332–11337. https://doi.org/10.1021/jp062886k
|
Energy Gap (at 300K)
|
5,47 eV
|
Page 430, Cui, J. B., Ristein, J., & Ley, L. (1998). Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface. Physical Review Letters, 81(2), 429–432. Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.81.429
|
Dielectric Constant
|
5,7
|
Page 270, Manca, J. V, Nesladek, M., Neelen, M., Quaeyhaegens, C., De Schepper, L., & De Ceuninck, W. (1999). High electrical resistivity of CVD-diamond. Microelectronics Reliability, 39(2), 269–273. http://dx.doi.org/10.1016/S0026-2714(98)00225-X
|
Standard Atomic Weight
|
12,011
|
Table 3, Page 284, Atomic weights of the elements 2013 (IUPAC Technical Report) . (2016). Pure and Applied Chemistry . https://doi.org/10.1515/pac-2015-0305
|
Atomic Radius
|
77 pm
|
Table 2.5, Page 18, Pierson, H. O. (2012). Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. Noyes Publications.
|
Covalent Radius
|
0,77 A
|
Page 184, Giannini, C., Fischer, A., Lange, C., Ploog, K., & Tapfer, L. (1992). Heavy carbon doping of GaAs grown by solid‐source molecular‐beam epitaxy. Applied Physics Letters, 61(2), 183–185. https://doi.org/10.1063/1.108212
|
Van der Waals Radius
|
170 pm
|
Page 354, Williams, K. A., & Eklund, P. C. (2000). Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chemical Physics Letters, 320(3), 352–358. https://doi.org/10.1016/S0009-2614(00)00225-6
|
Electron Configuration
|
1s2 2s2 2p2
|
Page 165504-1, Prasad, D. L. V. K., & Jemmis, E. D. (2008). Stuffing Improves the Stability of Fullerenelike Boron Clusters. Physical Review Letters, 100(16), 165504. Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.100.165504
|
Electrons per Shell
|
2, 4
|
|
Crystal Structure
|
face centered cubic
|
Page 385, Knight, D. S., & White, W. B. (1989). Characterization of diamond films by Raman spectroscopy. Journal of Materials Research, 4(2), 385–393. https://doi.org/10.1557/JMR.1989.0385
|