Carbon - Diamond - C

De Wiki Materials
Aller à : navigation, rechercher

General informations

Symbol C
Atomic Number 6
Element Category (chemical set) Polyatomic non metal
Group 14 (carbon group)
Period 2
Block p Page 13, Dozzi, M. V., & Selli, E. (2013). Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 14, 13–28. http://dx.doi.org/10.1016/j.jphotochemrev.2012.09.002
Mohs Hardness 10 Page 2, Will, G., & Perkins, P. G. (1999). A scientific approach to hardness: Materials Letters, 40(1), 1–4. http://dx.doi.org/10.1016/S0167-577X(99)00038-5
CAS Registry Number 7782-40-3
EINECS Registry Number 231-953-2

Physical Properties

Phase Solid
Melting Point 4300 K Page 579, Adawi, M. A., Didyk, A. Y., Varichenko, V. S., & Zaitsev, A. M. (1998). Radiation damage in dielectric and semiconductor single crystals (direct observation). Invited presentation at the Second Radiation Physics Conference, Menoufia, Egypt, 20–24 November 1994.1. Radiation Physics and Chemistry, 53(5), 577–582. http://dx.doi.org/10.1016/S0969-806X(97)00299-5
Boiling Point
Density near Room Temperature 3,51532 g/cm3 Page 1773, Mykolajewycz, R., Kalnajs, J., & Smakula, A. (1964). High‐Precision Density Determination of Natural Diamonds. Journal of Applied Physics, 35(6), 1773–1778. https://doi.org/10.1063/1.1713740
Density when Liquid at Melting Point
Heat of Fusion 9.2 MJ/kg "Polycristalline Diamond and method for forming same", Inventors: David K. Potter; Thomas J. Ahrens, both of Pasadena, Calif., Assignee: California Institut, Patent Number: 5,087,435, Date of Patent: Feb. 11, 1992
Heat of Vaporization
Molar Volume 3,417.10-6 m3/mol Page 201913-2, Wang, C. X., Liu, P., Cui, H., & Yang, G. W. (2005). Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Applied Physics Letters, 87(20), 201913. http://aip.scitation.org/doi/abs/10.1063/1.2132069
Molar Heat Capacity 6,115 J.mol-1.K-1 Table 5.1, Page 68, Yoshioka, D. (2007). The Heat Capacity of a Solid, and Black-Body Radiation. Statistical Physics: An Introduction, 67–81. https://link.springer.com/content/pdf/10.1007/978-3-540-28606-6_5.pdf
Vapor Pressure
Oxidation State 0
Speed of Sound 12000 m/s Page 4, Albrecht, A., Retzker, A., Jelezko, F., & Plenio, M. B. (2013). Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons. New Journal of Physics, 15(8), 83014. http://iopscience.iop.org/article/10.1088/1367-2630/15/8/083014/meta
Thermal Expansion 10-6 K-1 Page 39, Schubert, T., Trindade, B., Weißgärber, T., & Kieback, B. (2008). Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Materials Science and Engineering: A, 475(1), 39–44. http://www.sciencedirect.com/science/article/pii/S0921509307006910
Thermal Conductivity > 2000 W.m-1.K-1 Page 22, Wort, C. J. H., & Balmer, R. S. (2008). Diamond as an electronic material. Materials Today, 11(1), 22–28. http://dx.doi.org/10.1016/S1369-7021(07)70349-8
Electrical Resistivity 10e16 ohm.cm Page 270, Manca, J. V, Nesladek, M., Neelen, M., Quaeyhaegens, C., De Schepper, L., & De Ceuninck, W. (1999). High electrical resistivity of CVD-diamond. Microelectronics Reliability, 39(2), 269–273. http://dx.doi.org/10.1016/S0026-2714(98)00225-X
Magnetic Ordering diamagnetic
Young's Modulus 1144 GPa Page 880, Maître, N., Camelio, S., Barranco, A., Girardeau, T., & Breelle, E. (2005). Physical and chemical properties of amorphous hydrogenated carbon films deposited by PECVD in a low self-bias range. Journal of Non-Crystalline Solids, 351(10), 877–884. http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.058
Shear Modulus 533 GPa Page 429, Hebbache, M. (2000). Shear modulus and hardness of crystals: density functional calculations. Solid State Communications, 113(8), 427–432. http://dx.doi.org/10.1016/S0038-1098(99)00514-1
Bulk Modulus 435 GPa Page 7990, Cohen, M. L. (1985). Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B, 32(12), 7988–7991. Retrieved from https://link.aps.org/doi/10.1103/PhysRevB.32.7988
Poisson Ratio 0,0845 Table 1, Page 119, Krawitz, A. D., Andrew Winholtz, R., Drake, E. F., & Griffin, N. D. (1999). Residual stresses in polycrystalline diamond compacts. International Journal of Refractory Metals and Hard Materials, 17(1), 117–122. http://dx.doi.org/10.1016/S0263-4368(99)00007-4
Electronegativity (Pauling scale) 2,55 Table 1, Page 11334, Li, K., & Xue, D. (2006). Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 110(39), 11332–11337. https://doi.org/10.1021/jp062886k
Energy Gap (at 300K) 5,47 eV Page 430, Cui, J. B., Ristein, J., & Ley, L. (1998). Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface. Physical Review Letters, 81(2), 429–432. Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.81.429
Dielectric Constant 5,7 Page 270, Manca, J. V, Nesladek, M., Neelen, M., Quaeyhaegens, C., De Schepper, L., & De Ceuninck, W. (1999). High electrical resistivity of CVD-diamond. Microelectronics Reliability, 39(2), 269–273. http://dx.doi.org/10.1016/S0026-2714(98)00225-X

Atomic Properties

Standard Atomic Weight 12,011 Table 3, Page 284, Atomic weights of the elements 2013 (IUPAC Technical Report) . (2016). Pure and Applied Chemistry . https://doi.org/10.1515/pac-2015-0305
Atomic Radius 77 pm Table 2.5, Page 18, Pierson, H. O. (2012). Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. Noyes Publications.
Covalent Radius 0,77 A Page 184, Giannini, C., Fischer, A., Lange, C., Ploog, K., & Tapfer, L. (1992). Heavy carbon doping of GaAs grown by solid‐source molecular‐beam epitaxy. Applied Physics Letters, 61(2), 183–185. https://doi.org/10.1063/1.108212
Van der Waals Radius 170 pm Page 354, Williams, K. A., & Eklund, P. C. (2000). Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chemical Physics Letters, 320(3), 352–358. https://doi.org/10.1016/S0009-2614(00)00225-6
Electron Configuration 1s2 2s2 2p2 Page 165504-1, Prasad, D. L. V. K., & Jemmis, E. D. (2008). Stuffing Improves the Stability of Fullerenelike Boron Clusters. Physical Review Letters, 100(16), 165504. Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.100.165504
Electrons per Shell 2, 4
Crystal Structure face centered cubic Page 385, Knight, D. S., & White, W. B. (1989). Characterization of diamond films by Raman spectroscopy. Journal of Materials Research, 4(2), 385–393. https://doi.org/10.1557/JMR.1989.0385