Silicium – Si

Family : Semi-conductor

 

General informations

SymbolSi
Atomic number14
Element category (chemical set)Metalloid
GroupGroup 14 (Carbon group)
PeriodPeriod 3
Blockp-block
Mohs hardness7 Mohs (Page 335, article "Experimental Investigation on Mechanisms of Silicon Chemical Mechanical Polishing", E. Estragnat, G. Tang, H. Liang, S. Jahanmir, P. Pei, and J.M. Martin, Journal of Electronic Materials, Vol. 33, No. 4, 2004 )
CAS Registry number7440-21-3 (Page 36, article "Silicon (100)/SiO2 by XPS", David S. Jensen, Supriya S. Kanyal, and Nitesh Madaan, Michael A. Vail and Andrew E. Dadson, Mark H. Engelhard, Matthew R. Linford, Surface Science Spectra, Volume 20, Issue 1, 2013)
EINECS registry number231-130-8
 

Atomic properties

Standard atomic weight28.085 (Table 1, Page 8, article "Atomic weights of the elements 2013 (IUPAC Technical Report)", Juris Meija*, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk and Thomas Prohaska, Pure and Applied Chemistry, Volume 83, Issue 5, 2013)
Atomic radius110 pm (Table 4, Page 2275, article "Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations", Berrin Tansel, Sharon C. Surita, ScienceDirect, Waste Management, Volume 34, Issue 11, November 2014 )
Covalent radius111 pm (Table 4, Page 2275, article "Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations", Berrin Tansel, Sharon C. Surita, ScienceDirect, Waste Management, Volume 34, Issue 11, November 2014 )
Van der Waals radius210 pm (Table 4, Page 2275, article "Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations", Berrin Tansel, Sharon C. Surita, ScienceDirect, Waste Management, Volume 34, Issue 11, November 2014 )
Electron configuration[Ne] 3s2 3p2 (page 275, article "Continuous ultraviolet absorption by neutral silicon", John C. Rich, The Astrophysical Journal, Volume 148, April 1967)
Electrons per shell2, 8, 4
Oxidation state+4 (Page 330, article "Ge-interface engineering with ozone oxidation for low interface-state density", Kuzum D., Krishnamohan T., Pethe A. J., Okyay A. K., Oshima Y., Sun Y. & Saraswat K. C., IEEE Electron Device Letters, Volume 29, Number 4, April 2008)
Crystal structureDiamond lattice (page 10686, article "Dynamical theory of the laser-induced lattice instability of silicon", P. Stampfli and K. H. Bennemann, Physical Review B, Volume 46, Number 17, November 1992)
 

Physical properties

PhaseSolid
Melting point1683 K (page 737, article "Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics", Farid F. Abraham, Physical Review Letters, Volume 56, Number 7, February 1986)
Boiling point3500 K (page 487, article "The C-Si (Carbon-Silicon) System", R. W. Olesinski, G. J. Abbaschian, Bulletin of Alloy Phase Diagrams, Volume 5, Number 5, 1984)
Density near room temperature2.3290 g/cm3 (page 458, article "Composition and Structure of Surfaces of Silicon Spheres used in Determination of the Avogadro Constant", M. J. Kenny, R. J. Netterfield, L. S. Wielunski, D. Beaglehole, Institute of Electrical and Electronics Engineers, Conference on Precision Electromagnetic Measurements Digest, 1998
Density when liquid at meting point2570 kg/m3 (Page 370, article "Prediction of bulk defects in CZ Si crystals using 3D unsteady calculations of melt convection", V.V. Kalaeva, D.P. Lukanina , V.A. Zabelina , Yu.N. Makarovb , J. Virbulisc , E. Dornbergerc , W. von Ammon, Materials Science in Semiconductor Processing, Volume 5, Issues 4–5, August–October 2002
Heat of fusion5,066.10^4 J/mole ("Properties of Crystalline Silicon", Robert Hull, IET, 1999, ISBN 9780852969335)
Heat of vaporization13 722 000 J/kg (Page 123507-2, article "Thermal modeling and experimental study of infrared nanosecond laser ablation of silicon", Sha Tao, Benxin Wu, Yun Zhou, Yibo Gao, Journal of applied physics, Volume 106, Issue 12, 2009)
Molar volume12,0588207(54) cm3/mol ("A Reassessment of the Molar Volume of Silicon and of the Avogadro Constant", Paul De Bièvre, Staf Valkiers, Rüdiger Kessel, Philip D. P. Taylor, Peter Becker, H. Bettin, Anna Peuto, Savino Pettorruso, K. Fujii, A. Waseda, M. Tanaka, R. D. Deslattes, H. S. Peiser, and M. J. Kenny, IEEE Transactions on instrumentation and measurement, Volume 50, No 2, April 2001)
Molar heat capacity19,789 J/(mol.K) (CRC Handbook of Chemistry and Physics, 84th Edition, David R. Lide, CRC Press, 2003, Section 4, Properties of the Elements and Inorganic Compounds; Heat Capacity of the Elements at 25°C)
Vapor pressureNot set
Speed of sound5843 m/s (transverse), 8433 m/s (longitudinal), (Page 2424, article "Theoretical calculation of the acoustic force on a patterned silicon wafer during megasonic cleaning", P. A. Deymier, A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, S. Raghavan, Journal of applied physics, Volume 88, Number 5, September 2000)
Thermal expansion3,1.10-6/K at 20°C (Table 1, Page 536, "Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging", E.J. Cheng, Y.-L. Shen, Microelectronics Reliability, Volume 52, 2012)
Thermal conductivity66,5 W/m.K (Page 90, article "Gas flow effect on global heat transport andmelt convection in Czochralski silicon growth", V.V. Kalaev,I.Yu. Evstratov , Yu.N. Makarov, Journal of Crystal Growth, Volume 249, 2003)
Electrical resistivity2,3.10^5 Ω.cm (Page 1, article "Site-specific Pt deposition and etching on electrically and thermally isolated SiO2 micro-disk surfaces", Laxmikant V. Saraf, Journal of Micromechanics and Microengineerig, Volume 20, Number 4, 2010)
Magnetic orderingdiamagnetic (Page 1915, article "Growth of single-crystalline nickel silicide nanowires with excellent physical properties", Jen-Yi Lin, Hsiu-Ming Hsu and Kuo-Chang Lu, CrystEngComm, Volume 17, Number 9, 2015)
Young's modulus130,2 GPa (<100> directions), 187,5 GPa (<110> directions), and 168,9 GPa (<111> directions) (Page 662, article "Why is (111) silicon a better mechanical material for MEMS?", Jongpal Kim, Dong-il (Dan) Cho, Richard S. Muller, in "Transducers’ 01 Eurosensors XV", Springer Berlin Heidelberg, 2001)
Shear modulus50,92 GPa (<100> directions), 79,4 GPa (<110> directions) and 57,8 to 66,9 GPa (<111> directions) (Page 662, article "Why is (111) silicon a better mechanical material for MEMS?", Jongpal Kim, Dong-il (Dan) Cho, Richard S. Muller, in "Transducers’ 01 Eurosensors XV", Springer Berlin Heidelberg, 2001)
Bulk modulus90 +- 5 GPa (Page 5290, article "High Pressure Behavior of Silicon Clathrates: A New Class of Low Compressibility Materials", A. San-Miguel, P. Kéghélian, X. Blase, P. Mélinon, A. Perez, J. P. Itié, A. Polian, E. Reny, C. Cros, and M. Pouchard, Physical Review Letters, Volume 83, Number 25, 20 December 1999)
Poisson ratio0,064 (<100> directions), 0,361 (<110> directions), and 0,182 to 0,262 (<111> directions) (Page 662, article "Why is (111) silicon a better mechanical material for MEMS?", Jongpal Kim, Dong-il (Dan) Cho, Richard S. Muller, in "Transducers’ 01 Eurosensors XV", Springer Berlin Heidelberg, 2001)
Electronegativity (Pauling scale)1,90 (Table 4, Pages 2271-2277, article "Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations", Berrin Tansel, Sharon C. Surita, ScienceDirect, Waste Management Volume 34, Issue 11, November 2014)
Electrical conductivity250 μS.m−1 (Page 157, article "Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition", H. Wolf, Z. Pajkic, T. Gerdes, M. Willert-Porada, Journal of Power Sources, Volume 190, 2009)
Energy gap (at 300 K)1,1242 eV (Page 1847, article "Temperature dependence of the band gap of silicon", Bludau W., Onton A., Heinke W., Journal of Applied Physics, Number 45, 1974)
Dielectric constant11,8 (Page 062106-1, article "Terahertz conductivity of doped silicon calculated using the ensemble Monte Carlo/finite-difference time-domain simulation technique", Willis K. J., Hagness S. C., Knezevic I., Applied Physics Letters, Number 96(6), 2010)


Back to wiki homepage